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Optimal Drive Beam Profile for Blowout
Regime of PWFA

E+ = acc. field;E! = decc. field
R = E+ / E! = kpLz
R > 2  if  Lz > 2kp

Transformer Ratio:

triangle doorstep ideal

Chen, P., Su, J., and Dawson, J.  SLAC PUB 3662 (1985).

• PWFA:  plasma wakefield accelerator
• electron beam-driven plasma waves
• acc. fields on order of multi-GeV/m
• acceleration of drive tail or witness bunch



Initial Final:  Sextupoles Off Final:  Sextupoles On

Neptune Dogleg Compressor
PARMELA Simulation Results:  1000 particles, 300pC

!x,N (initial)=4.9 µm
1.6 11.5

"!x,N=9.9 µm+12.7 µm = 22.6 µm 
space-charge nonlinear total

GUN PWT Final FocusPre-Focus sextupoles

• 2D PIC Simulation
• 5 GeV/m gradients
• 6 nC drive beam w/ n0=2e16 cm-3



Neptune Dogleg Compressor
S-Bahn Compressor

• Is a “dogleg” or dispersionless translating section.
• Half-chicane with focusing elements between the
bends.
• Can be operated in a nondispersive mode with
symmetric beta function and 2! betatron advance.
• Like a chicane, may be used as a bunch-length
compressor.
• Nominal first order temporal dispersion (R56=-5cm)
is suitable for beam-shaping.
• Sextupoles required to compensate 2nd order
longitudinal dispersion.



The UCLA Neptune Laboratory

5 ps RMSLaser pulse length:

60 µJ at # = 266 nmCathode laser:

2.856 GHzRF Frequency:

18 MW KlystronPower Source:

!N = 6 mm mradEmittance:

up to 15 MeVBeam energy:

100pC ---> 500pCBeam Charge:

7&2/2 Cell PWT Linac1.6-Cell Photoinjector



Temporal Bunch Shaping:  Diagnostic
Deflecting Mode Cavity
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Courtesy of D. Alesini

J.D. J.D. FuerstFuerst, et. al., DESY Report CDR98, 1998, et. al., DESY Report CDR98, 1998

Lowest dipole mode is TM110
Zero electric field on-axis (in pillbox approx.)
Deflection is purely magnetic
Polarization selection requires asymmetry

on axis
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Pillbox Fields



Deflecting Cavity:  Power & Resolution

! t ,min =
! x,0U / e
L"V# f

V! >>Vmin =
" x,0U / e
L#" t f

! x, f = ! x,0
2 +! def

2 ! def = 2! zL
"V# f
cU / e

 cos($0 )screen deflection:

! x, f = beam size at screen with deflector on;
! x,0 = 0.3mm = beam size at screen with deflector off;
L = 43cm = drift from deflector to screen;
f = 9.6GHz = RF frequency;
V" = deflecting voltage;
R" = 820k# = transverse shunt impedance per cell;
Pin = input RF power;
U = 12MeV = electron beam energy;
$0 = deflector injection phase = 0;
! t ,min = minimum resolvable rms bunch length;
%x = 30µm = spatial resolution of screen & optics;
%t = effective temporal resolution of deflector;

V! ,design = 3Vmin = 545kV ! t ,min = 545 fs

!t = !x U / e
L" fR#

1/2 nPin

n=1

n=3
n=5n=7

n=950 kW

45 fs

9 cells; 50 kW; 50 fs resolution

1 (!0 " 0)



Deflecting Cavity TM110 Animations

H-field complex magnitude H-field vector plot



Deflecting Cavity:  HFSS Design

HFSS Geometry of 1/2 structure
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• X-Band, 9-cell design.
• Collaboration with INFL Frascatti.
• Will be built at UCLA; diffusion bonded at SLAC.
• Powered by a VA-24G X-Band klystron @ 50 kW.
• Frequency:  9.59616GHz



Deflecting Cavity:  HFSS Design

Resonance of the "-Mode

Pin = 50kW

V! = 1
e F!dz = 528kV"

R! = V!
2 / Pin = 5.6M#

out of phase by 90˚

E-field H-field



Deflecting Cavity:  Polarization Separation

Undesired             Desired           Undesired        Desired
 +1358 MHz         +53 MHz           -7 MHz           -2 MHz

HolesRods

•Rods give greater better mode separation but
   shift the desired mode too much
•Holes give less mode separation (5 MHz) but
   only perturb desired mode by 2 MHz (within
   range of temperature tuning).
•Holes look like better option:  5 MHz is large
   compared to the resonance width



Overview of Design Process

Aluminum
9-cell
9.3 GHz
cold-test only
clamped
no polarization separation

Steel with Cu coating
9-cell
9.5 GHz
cold-test only
cf flange design
no polarization separation

GlidCop Al-15
9-cell
9.59616 GHz
tested up to 70kW pp
cf flange design
EDM’ed polarization holes

cold test prototype steel prototype final design

2004 2005 2006



Final Cavity Design

x-band klystron (70 kW peak)

CAD drawing of stacked cells

one cell with polarization holes

• 9-cell standing wave structure
• center-fed input RF
• reconditioned VA-24G klystron
• no brazing between cells
• cells are stacked CF vacuum flanges



S-Band/X-Band RF System

• S and X-Band frequencies are multiples of modelocker freq of drive laser

• Ensures phase stability of gun, linac, laser, and deflector



Input Coupler Tuning & Cold Test

Tuning of input coupling iris:

• corner radii reduced to 1/16’’
• iris width increased by 0.585 mm
• dots: HFSS simulation data
• red lines: measured init & final beta values
• measured at room temp (24 ˚C)

(iris width)/2 (mm) 

% = 0.308

% = 0.964



Bead Pull Results

f0 = 9.60043 GHz ; ∆f = 1.5 MHz
% = 0.965 ; VSWR = 1.03637
QL = 6638 ; Q0 = 13043 ; Qe = 13517

~ |E|2

~ |H|2

~ |H|

~ |E|

• Bead pull using aluminum bead
• Data proportional to |E|2 and |H|2

• Field flatness ~ ±5%
• Data taken at room temp (24 C)



Temperature Tuning

Frequency vs. Temperature

• using heater tape and thermocouple
• PID temperature feedback control
• dots are measured data
• solid lines are linear fits
• df/dT = -179 kHz/˚C

~ 2 MHz

Reflectance vs. Temperature

• dots are measured data
• solid lines are interpolations
• at optimal freq in vacuum (9.59616 GHz),
  cavity is slightly overcoupled (-35 dB @ 62 C)
• therefore operating % = 1.036 in vacuum

65˚C



High Power RF Measurements



ELEGANT Simulations

ELEGANT Simulation Results

• Using RFDF element with 9 cells
• 10,000 macroparticles
• Shunt Impedance: RT = 6.12 MΩ
• Power:   P = V0

2/RT V0 = 0 ; P = 0

V0 = 272 kV ; P = 12 kW

V0 = 545 kV ; P = 48 kW

V0 = 609 kV ; P = 61 kW

Initial Current Profile

* see e.g. Emma P, et al, SLAC report LCLS-TN-00-12 (2000).



ELEGANT Simulations

z phase space reconstruction

Addition of dipole magnet permits
full tomographic reconstruction.*

time

Energy

ELEGANT Simulation Results

• Using RFDF element with 9 cells
• 10,000 macroparticles
• Shunt Impedance: RT = 6.12 MΩ
• Power:   P = V0

2/RT

• Hybrid permanent
   magnet & iron dipole
• Designed in RADIA
• Built and ready for 
   installation



Conclusions

• Ramped bunch profile:
   - improved transformer ratio (R > 2) for PWFA applications
   - feasible using dogleg compression with sextupoles
   - deflecting cavity diagnostic (50 fs resolution)
• Status of deflecting cavity
   - final cavity design finalized using HFSS
   - cavity construction complete; cavity installed at Neptune
   - high power RF testing complete:  no breakdown problems observed
• Near-term experiments:
   - test cavity with 12.5 MeV electron bunches
   - implement permanent magnet dipole for t-p phase space tomography
   - implement permanent magnet quadrupoles for high-brightness focus studies


